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Summary. The conventional single-zeta (SZ) approximation in Roo thaan-  
Hart ree-Fock calculations of atoms is based upon a single Slater-type function 
(STF) ~nlm for the description of each occupied atomic orbital ~bnz,~ with quantum 
numbers n, l, m. We demonstate that the SZ approximation can be improved for 
A1 through Xe by lifting the tacit restriction that the principal quantum numbers 
of the STF match those of the atomic orbitals. The resulting improvements in the 
atomic energies range from 0.0015 a.u. in A1 to 6.4a.u. in Xe. The valence 
orbital energies also improve noticeably. Some of the unphysical positive d-or- 
bital energies in the conventional SZ description of transition metal atoms turn 
negative in our improved SZ approximation. 

Key words: Single-zeta wave functions - Minimal basis sets - Slater type func- 
tions - Ground-state neutral atoms 

1. Introduction 

In the Roothaan-Har t ree -Fock  (RHF) description [1] of atoms, the single-zeta 
(SZ) or minimal basis approximation is the simplest approximation which 
describes the electronic structure semiquantitatively. The SZ approximation uses 
a single Slater-type function (STF) Xntm for each occupied atomic orbital ~bntm 
with quantum numbers n, l, m. The STF is defined by: 

Z.tm Cr; () = R.t(r; ~)Ylm(O, ¢), 

Rnl(r; 0 = [(2n)!] m(2 0 ~ + (1/2)rn - 1 exp( - ~r). (1) 

The SZ approximation originated in the landmark papers by Zener and Slater 
[2, 3]. 

Minimal STF basis sets are of interest even though they do not give 
quantitatively accurate results. They provide us with significant physical intuition 
such as effective nuclear charges and screening constants [2, 3]. After fitting to 
Gaussians, as in the STO-3G basis sets [4], they may be useful for very large 
molecules [4] for which more elaborate calculations are not feasible even with 
current computer technology. Improved ab initio minimal basis sets of STF also 
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may be useful for improvements in the calibration of semiempirical theories that 
use minimal basis sets, such as the various neglect of differential overlap methods 
[5, 6]. Finally, improved minimal basis sets could serve as the starting point for 
the construction of more flexible STF basis sets which might prove useful in 
density functional calculations as carried out by the Amsterdam and Calgary 
groups [7, 8]. 

Because of the small number of basis functions in the SZ approximation, the 
optimality of the constituent STFs is particularly important. An extensive 
examination of the optimum STF exponents {~} was carried out by Clementi 
and coworkers for the atoms He through Xe [9-12]. Some modifications of these 
atomic exponents have been proposed for molecular calculations (see, e.g., [4]). 

However, little attention has been paid to the choice of the principal 
quantum numbers of the STF. It is common practice to approximate an atomic 
orbital (AO) ~nlm by an STF X,tm with the same quantum numbers. We shall 
refer to the SZ wave function resulting from this prescription as the conventional 
SZ wave function. The tacit assumption that the principal quantum numbers of 
the AO and the corresponding STF be the same is unnecessarily restrictive 
because the radial part of an STF is just a simple nodeless approximation to a 
hydrogenic function. Cook [13] made a comparative analysis of STFs and 
hydrogenic functions, and proposed, for the atoms Na-Kr,  the use of 2s and 2p 
STFs for s- and p-subshells with n/> 2. His modification led to a nontrivial 
improvement in the valence orbital energies, but the total energies were not 
always improved and sometimes worsened. The latter feature is quite undesirable 
because RHF theory, and its SZ approximation, rests upon the variational 
principle. 

In the present paper, we study the variational optimization of both the 
principal quantum numbers {n} and the exponents {~} of STFs {X,lm(~r; ~)} 
involved in the SZ description of the atoms He-Xe. The {n} are limited to 
integer values in this work. For the atoms He-Mg, the conventional SZ function 
is found to be the best, but an unconventional SZ function with an improved 
energy is found for each of the atoms A1 through Xe; the improvement amounts 
to 6.4 a.u. for the Xe atom. Moreover, a remarkable improvement in the valence 
orbital energies is obtained for almost all cases. For some transition metal atoms, 
the present SZ function gives a negative orbital energy for the outermost 
d-orbital in contrast to the unphysical positive orbital energy predicted by the 
corresponding conventional SZ function. Hartree atomic units are used through- 
out this paper. 

2. Method 

All the present RHF calculations were performed with a modified and corrected 
version [14] of Pitzer's implementation [15] of the Roothaan-Bagus procedure 
[16]. For a given combination of STF principal quantum numbers {n}, all the 
exponents {~ } were variationally optimized with the Powell method of conjugate 
directions [17], and the variationally optimum set {n} was determined by the 
following trial-and-error procedure. 

In order to simplify the search for the optimal {n }, we decomposed the set {n } 
into three subsets {n} = {n}s + {/'/}p + {n}d based on the azimuthal quantum 
number l. (The subsets {n}a and {n}p are null for the lighter atoms.) Then starting 
from {n} for the conventional SZ function, we determined the best {n} for each 
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symmetry in a "decoupled" manner. A few "coupled" searches of {n}l and {n}~, 
were made to verify that the above decoupled procedure did not change the best 
combination of {n}. Moreover, we imposed the restriction n < 5 on the basis of 
preliminary tests. 

Despite these simplifications for the best {n} search, we had to recognize that 
there are several local minima in the {~} space for a given combination of {n}. 
Therefore, we tried various sets of initial values of {~}. In the case of the 
fourth-row atoms, we performed about 400 optimizations with different sets {n } 
and different initial sets {~} for each atom. We think the majority of the 
improved SZ functions reported below are at the global minimum. 

3. Results and discussion 

The variational optimization of the STF parameters {n} and {~} in the SZ 
approximation has been performed for the atoms He through Xe in their 
experimental ground states. For the atoms He-Mg,  we have confirmed that the 
conventional SZ function is the best. However, superior unconventional SZ 
functions have been found for the other atoms. Table 1 presents a comparison of 
the energies of our unconventional SZ functions for A1-Xe with conventional 
ones. (The conventional SZ functions have been also reoptimized in the present 
study and some of them have slightly lower energies than the literature values 
[9-12].) Table 1 shows that the improvement in the total energy increases with 
atomic number Z from 0.0015 a.u. for A1 to 6.4 a.u. for Xe. 

Table 2 shows the detailed composition and parameters of our unconven- 
tional SZ functions. The notation (.../../.) stands for the principal quantum 
numbers for the constituent s-, p-, and d-type STFs. The corresponding expo- 
nents are given in a similar manner. In all these calculations, the virial ratio did 
not deviate from its exact value ( - 2 )  by more than 1 x 10 7 lending support to 
our claim that our exponents have been optimized sufficiently. It is rather 
difficult to derive a systematic rule for the best combination of {n } from Table 
2. However, the following rough trends can be discerned: 

(i) For ns (n >~ 2) AOs, 3s STFs give a good description generally. This 
statement holds for Ca-Xe.  For the lighter atoms A1-K, ls and 2s STFs play a 
definite role, while for the heavier atoms In-Xe,  a 4s STF contributes slightly. 
The recommendation [18, 19] for the use of STF with the smallest n (i.e., ls STF 
for s AOs, 2p STF for p AOs, etc.) is seen to be non-optimal. 

(ii) For p AOs, 2p STFs are suitable. This result agrees with Cook's modifica- 
tion [13]. For heavier atoms (As-Xe), however, 3p STFs become more appropri- 
ate for the description of np (n ~ 3) AOs. 

(iii) For d AOs, 3d STFs are the best with the sole exception of Y. 

It is interesting that except for the atoms S-K,  only a single ls STF is 
involved and its exponent is approximately Z - 0.3 in accord with the Slater rule 
[2, 3]. When there is one ls STF and all the other s-STFs have n ~> 2 as in many 
of our unconventional SZ functions, then the electron-nuclear cusp condition is 
satisfied if the exponent of the ls STF is the atomic number Z. A more 
remarkable point is that an ns STF is not always used to represent the ns AO. 
In the atoms Nb, Mo, Rh, and Cd, for example, the 2s STF appears as the 
dominant component of the 5s AO, and a 3s STF is used to describe the 2s AO. 
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Table 1. Comparison of the conventional and improved single-zeta 
atomic energies 

Atomic energy 
Energy 

Atom Conventional Present improvement 

A1 (2p) -241.15376 --241.15525 0.00149 
Si (3p) -288.08996 -288.09291 0.00295 
P (4S) -339.90988 -339.91410 0.00422 
S (3p) -396.62762 -396.65329 0.02567 
C1 (2p) -458.52369 -458.58386 0.06017 
Ar (1S) -525.76525 -525.86636 0,10111 

K (zS) -598.08987 -598.16047 0.07060 
Ca (IS) --675.63390 --675,72571 0.09181 
Sc (2D) -758.40414 -758.55760 0.15346 
Ti (3F) -846.81561 -847.03742 0.22181 
V (4F) -940.97197 -941.27626 0.30429 
Cr (7S) - 1040.6768 - 1041.1118 0.4350 
Mn (6S) - 1147.1067 -1147,5968 0.4901 
Fe (SD) - 1259.0855 - 1259.6777 0.5922 
Co (4F) -- 1377.3744 --1378.0759 0.7015 
Ni (3F) - 1502.0487 --1502,8662 0.8175 
Cu (2S) - 1632.3355 - 1633,3292 0.9937 
Zn (1S) - 1771.1509 - 1772,2205 1.0696 
Ga (2p) -1916.5167 -1917.6290 1.1123 
Ge (3p) -2068.5139 -2069.6880 1.1741 
As (4S) -2227.2649 -2228.5308 1.2659 
Se (3p) -2392.7274 -2394.1472 1.4198 
Br (2p) -2565.1131 -2566.6969 1.5838 
Kr (IS) -2744.5197 -2746.2772 1.7575 

Rb (2S) -2930.6932 -2932.5795 1.8863 
Sr (1S) -3123.7176 -3125.7516 2.0340 
Y (2D) -3324.7806 -3326.9999 2.2193 
Zr (3F) --3531.3183 -3533.7825 2.4642 
Nb (6D) -3745,2568 -3748.0494 2.7926 
Mo (7S) -3966,8957 -3969.9453 3.0496 
Tc (6S) -4196,0537 -4199.2775 3.2238 
Ru (SF) -4432.1153 -4435.7609 3.6456 
Rh (4F) -4676.0291 -4680.0025 3.9734 
Pd (1S) -4927.7307 -4932.6095 4.8788 
Ag (2S) -5186.8953 --5191.5861 4.6908 
Cd (1S) --5454.1908 -5459.0990 4.9082 
In (2p) -5729.0987 -5734.2013 5.1026 
Sn (3/o) -6011.6720 -6017.0059 5.3339 
Sb (4S) -6302.0043 -6307.5800 5.5757 
Te (3p) -6600.0387 --6605.8807 5.8420 
I (zp) --6905.9462 -6912.0649 6.1187 
Xe (1S) -7219.7923 -7226.1971 6.4048 

F igu re s  l a  a n d  b respec t ive ly  s h o w  the  ra t ios  o f  the  energ ies  o f  the  h ighes t  s-  
a n d  p - A O s  c o m p u t e d  in the  SZ a p p r o x i m a t i o n  to the  c o r r e s p o n d i n g  n u m e r i c a l  
H a r t r e e - F o c k  l imi t  va lues  [20, 21]. F i g u r e  l a  shows  c lear ly  t h a t  the  u n c o n v e n -  
t iona l  SZ f u n c t i o n s  lead  to n o t i c e a b l y  i m p r o v e d  va l ence  s - o r b i t a l  energies ,  
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Table 2. Parameters of the improved single-zeta functions 

Principal quantum 
Atom numbers Exponents 

A1 (2p) (123/22) 
Si (3p) (123/22) 
P (4S) (123/22) 
S (3p) (112/22) 
C1 (2p) (112/22) 
Ar (1S) (112/22) 
K (2S) (1123/22) 
Ca (1S) (1333/23) 
Sc (2D) (1333/23/3) 
Ti (3F) (1333/22/3) 
V (4F) (1333/22/3) 
Cr (7S) (1233/22/3) 
Mn (6S) (1333/22/3) 
Fe (SD) (1233/22/3) 
Co (4F) (1233/22/3) 
Ni (3F) (1233/22/3) 
Cu (2S) (1233/22/3) 
Zn (1S) (1233/22/3) 
Ga (2p) (1333/222/3) 

Ge (3p) (1333/223/3) 

As (4S) (1333/233/3) 

Se (3p) (1333/233/3) 

Br (2p) (1333/233/3) 

Kr (1S) (1333/233/3) 

Rb (2S) (13333/233/3) 

Sr (1S) (13333/233/3) 

Y (2D) (13333/233/34) 

Zr (3F) (13333/233/33) 

Nb (60) (12333/233/33) 

Mo (7S) (12333/233/33) 

Tc (6S) (13333/233/33) 

Ru (SF) (12333/233/33) 

Rh (4F) (12333/233/33) 

Pd (1S) (13333/233/33) 

12.59110, 4.10601, 1.37692/4.48407, 0.91237) 
13.57463, 4.50879,1.64169/4.97188,0.97139) 
14.55790, 4.91054, 1.88953/5.47327, 1.11756) 
15.55678, 1.07329, 5.23989/5.97268,1.25970) 
16.54333, 1.22055, 5.63380/6.47162, 1.41171) 
17.52995, 1.36548, 6.02763/6.96854, 1.56754) 

18.51934, 1.56381, 6.41025, 0.70614/7.46772, 1.80666) 
19.70586,10.26552,3.16067,0.85503/8.01047, 2.87308) 
20.70690, 10.87025, 3.40469, 0.90092/8.51715, 3.12332/2,33454) 
21.70828,11.47176,3.63918,0.95458/8.95710, 2.38335/2.74745) 
22.70963, 12.07485, 3.86127, 0.98411/9.45690, 2.54765/3.01924) 
23.71084, 0.61038,12.67887,4.04703/9.96212,2.67413/3.04662) 
24.71269, 13.27991, 4.29294, 1.03707/10.45477, 2.86579/3.52608) 
25.71429, 0.74096, 13.88399,4.49908/10.95324, 3.02589/3.73969) 
26.71602, 0.75558, 14.48639,4.71220/11.45122, 3.18332/3.96382) 
27.71783, 0.76958, 15.08857, 
28.71939, 0.63684, 15.69222, 
29.72164, 0.79601, 16.29229, 
30.72389, 16.89180, 5.59764, 

0.69962/5.03237) 
31.72606, 17.49234, 5.84919, 

1.24006/5.41429) 
32.72801, 18.09572, 6.10124, 

1.43441/5.76463) 
33.73010, 18.69629, 6.35766, 

1.57543/6.13126) 
34.73215, 19.29677, 6.61565, 

1.72266/6.49134) 
35.73415, 19.89718, 6.87478, 

1.87065/6.84621) 

36.73616, 20.50121, 7.13033, 
7.06560, 2.09696/7.19766) 

37.73823, 21.10513, 7.38445, 
7.34749, 2.31165/7.54688) 

38.74074, 21.69777, 7.66717, 2.84457, 0.79996/17.49351, 
7.65303, 2.47529/8.44236, 3.98864) 

39.74268, 22.30418, 7.91441, 3.00048, 0.83244/17.99291, 
7.92244, 2.62880/8.47561, 2.45682) 

40.74475, 0.55741, 22.90709, 8.17268, 3.13958/18.48901, 
8.19949, 2.76078/8.70942, 2.10832) 

41.74690, 0.58744, 23.50913, 8.43118, 3.30298/18.98342, 
8.47952, 2.92037/9.05368, 2.20192) 

42.74906, 24.11146, 8.68479, 3.49111, 0.94060/19.47761, 
8.75765,3.10657/9.41985, 2.44649) 

43.75124, 0.60412, 24.71237, 8.95102, 3.61853/19.97147, 
9.03985,3.23011/9.75000, 2.42998) 

44.75343, 0.60829, 25.31378,9.21182, 3.77064/20.46515, 
9.31982, 3.37926/10.09936, 2.55712) 

45.77610, 33.59288, 22.30693,9.82317, 3.86366/20.96030, 
9.60664,3.49872/10.44740, 2.58951) 

4.92332/11.94885,3.33912/4.18756) 
5.10905/12.45388, 3.46071/4.22131) 
5.33991/12.94319, 3.64605/4.63546) 
1.39582/13.43437, 3.84195, 

1.58758/13.92235, 4.04423, 

1.74822/14.52912, 5.93858, 

1.92111/15.02480, 6.21776, 

2.08534/15.52028, 6.49953, 

2.24370/16.01548, 6.78257, 

2.46266, 0.62964/16.51154, 

2.67214, 0.78238/17.00734, 
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Principal quantum 
Atom numbers Exponents 

Ag (aS) (12333/233/33) 

Cd (IS) (12333/233/33) 

In (2p) (13334/2333/33) 

Sn (3p) (13334/2333/33) 

Sb (4S) (13334/2333/33) 

Te (3p) (13334/2333/33) 

I (2p) (13334/2333/33) 

Xe (iS) (13334/2333/33) 

(46.75785, 0.61392, 26.51644,9.73463, 4.06679/21.45195, 
9.87931,3.66969/10.79707, 2.81869) 

(47.76005, 0.75041, 27.11940,9.98727, 4.23709, 21,94543, 
10.15482,3.84487/11.15010,3.03561) 

(48.76187, 27.72772, 10.30486,1.25001, 5.51366/22.44001, 
10.42879,4.03674, 0.95529/11.50117,3.24593) 

(49.76395, 28.33207,10.55953, 1.40143, 5.72749/22.93386, 
10.70251, 4.22103, 1.10544/11.85015,3.45263) 

(50.76601, 28.93640, 10.81390, 1.53690, 5.94038/23.42756, 
10.97549, 4.40506, 1.24685/12.19732,3.65473) 

(51.76805, 29.54080, 11.06782,1.66621, 6.15305/23.92102, 
11.24761,4.58972, 1.36315/12.54305,3.85416) 

(52.77007, 30.14519, 11.32143,1.78831, 6.36519/24.41431, 
11.51883,4.77408, 1.48080/12.88738,4.05069) 

(53.77207, 30.74958,11.57475, 1.90553, 6.57690/24.90737, 
11.78912, 4.95779, 1.59691/13.23045,4.24489) 

particularly for Z ~> 30. The energies of the highest s-AOs in the 42 unconven- 
tional SZ functions have an average percent error, with respect to numerical 
Hartree-Fock values, of 8.12% to be compared with 16.68% for the conven- 
tional SZ functions. Similarly, the energies of the highest p-AOs in the uncon- 
ventional SZ functions have an average error of 7.59% compared with 14.25% 
for the conventional SZ functions. The improvement in the valence p-AO 
energies is most noticeable in Fig. lb for atoms in groups 13-18. 

Table 3 shows that the energies of the highest d-AOs for the unconventional 
SZ functions are better than those for the conventional SZ functions except in 
the case of St. Our reoptimizations of the exponents of the conventional SZ 
functions did not remove the unphysical positive orbital energies for Cr, Cu, Zn, 
Y, Zr, and Pd. However, the unconventional SZ approximation does remove 
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Fig. la,b. Comparison 
of the conventional 
(O)  and our 
unconventional (©) SZ 
orbital energies esz. 
e~VHF are numerical 
Hartree Fock orbital 
energies, a highest 
s-orbitals, and b 
highest p-orbitals 

Table 3. Comparison of the outermost d orbital energies 

Single-zeta 

Atom AO Conventional Present 
Numerical 
Hartree Fock a 

Sc (2D) 3d -0.18990 -0.18489 
Ti (3F) 3d -0.24338 -0.29264 
V (4F) 3d -0.25641 -0.30833 
Cr (7S) 3d +0.02561 -0.02984 
Mn (6S) 3d -0.25165 -0.31056 
Fe (SD) 3d -0.15687 -0.22959 
Co (4D) 3d -0.08081 -0.15784 
Ni (3F) 3d -0.00051 -0.08201 
Cu (2S) 3d +0.50680 +0.43012 
Zn (IS) 3d +0.16629 +0.07537 
Ga (2p) 3d -0.24480 -0.36257 
Ge (3p) 3d -0.71576 -0.82401 
As (4S) 3d - 1.21390 - 1.21965 
Se (3p) 3d -1.75996 -1.76733 
Br (2/o) 3d -2.33571 -2.34531 
Kr (IS) 3d -2.94300 -2.95537 

Rb (2S) 3d -3.87716 -3.88264 
Sr (1S) 3d -4.85927 -4.85727 
Y (2D) 4d +0.74249 +0.70769 
Zr (3F) 4d +0.00208 -0.09585 
Nb (6D) 4d -0.05598 -0.15383 
Mo (7S) 4d -0.10670 -0.21439 
Tc (6S) 4d -0.32152 -0.42416 
Ru (SF) 4d -0.09612 -0.23802 
Rh (4F) 4d -0.09904 -0.25859 
Pd (1S) 4d +0.18570 -0.02128 
Ag (2S) 4d -0.11319 -0.30962 
Cd (~S) 4d -0.38621 -0.58291 
In (2p) 4d -0.68967 -0.88763 
Sn (3p) 4d -1.02290 -1.21813 
Sb (4S) 4d - 1.36129 - 1.55564 
Te (3p) 4d -1.72179 -1.91746 
I (2p) 4d -2.09163 -2.29000 
Xe (1S) 4d -2.47298 -2.67530 

-0.34371 
-0.44066 
-0.50962 
-0.32249 
-0.63885 
--0.64689 
--0.67542 
-0.70693 
-0.49123 
-0.78254 
- 1.19337 
- -  1.63490 
-2.11266 
--2.64963 
--3.22018 
-3.82523 

--4.73229 
-5.69439 
-0.24985 
--0.33676 
-0.26766 
--0.31222 
--0.54395 
-0.40112 
-0.44602 
-0.33600 
-0.53739 
-0.76366 
- 1.06314 
- -  1.36904 
-- 1.68787 
-2.03829 
-2.40120 
-2.77788 

a Refs [20] and [21] 
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them in Cr, Zr, and Pd. The energies of the highest d-AOs in the unconventional 
SZ functions have an average error of 56.1% compared with 71.5% for the 
conventional SZ functions. Unfortunately, even the optimal SZ approximation is 
rather poor for the d-orbitals. This confirms previous work [13, 22, 23] that 
d-type STFs are very poor representations of d-orbitals. Thus, one must either 
enlarge the d-block of the minimal STF basis set or use unconventional basis 
functions such as those suggested by Hojer [23]. 

4. Concluding remarks 

We have found that the variational choice of the principal quantum numbers {n } 
of the STFs improves remarkably the quality of a single-zeta or minimal STF 
basis set wave function. Compared to the conventional SZ function, the opti- 
mum SZ function lowers the atomic energy as much as 6.4 for Xe, for example. 
The improvement in the valence orbital energies is large, and some of the 
positive d orbital energies found in the conventional SZ calculation turn nega- 
tive. It is satisfying that more stringent application of the variational principle 
improves the valence properties rather than worsens them at the expense of an 
improved core as conventional folklore would suggest. 
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